lunes, 25 de octubre de 2021

DEFINICIÓN DEL PROBLEMA Y RECOLECCIÓN DE DATOS - Ejemplos.

 Un estudio de IO para el Departamento de Policía de San Francisco dio como resultado el desarrollo de un sistema computarizado para la programación y asignación óptima de los oficiales de policía en patrulla. El nuevo sistema generó un ahorro anual de 11 millones de dólares, un incremento anual de 3 millones de ingresos por infracciones de tránsito y una mejora de 20% en tiempos de respuesta.

Cuando se establecieron los objetivos apropiados de este estudio, se identificaron tres de ellos como fundamentales:

1. Mantener un alto nivel de seguridad civil.

2. Mantener en un alto nivel la moral de los oficiales.

3. Minimizar el costo de las operaciones.

Para satisfacer el primer objetivo, el departamento de policía y el gobierno de la ciudad fijaron un nivel deseado de protección. Luego, el modelo matemático impuso el requisito de lograr este nivel de protección. De manera similar, también impuso el requisito de balancear la carga de trabajo entre los oficiales con el fin de lograr el segundo objetivo. Por último, el tercer objetivo se incorporó adoptando la meta a largo plazo de minimizar el número de oficiales necesarios para cumplir con los dos primeros objetivos.

El Departamento de Salud de New Haven, Connecticut, utilizó un equipo de IO para diseñar un eficaz programa de intercambio de agujas para combatir el contagio del virus que causa el SIDA (VIH). El emprendimiento tuvo éxito pues se logró una reducción de 33% de la tasa de infección entre los participantes del programa. La parte central de este estudio fue un innovador programa de recolección de datos con el fin de obtener los insumos necesarios para los modelos matemáticos de transmisión del SIDA. Este programa abarcó un rastreo completo de cada aguja y cada jeringa —con la identificación, localización y fecha de cada persona que recibía una aguja así como la de aquella que la regresaba después de un intercambio—, junto con una prueba que determinara la negatividad o positividad de la aguja utilizada respecto al VIH.

A finales de la década de los noventa, las compañías de servicios financieros generales sufrieron el ataque de las firmas de corretaje electrónico que ofrecían costos de compraventa financiera muy bajos. Merrill Lynch2 respondió con la realización de un gran estudio de IO que recomendó la revisión completa de la manera como cobraba sus servicios, desde una opción basada en activos de servicio completo —cargo de un porcentaje fijo del valor de los activos en vez de hacerlo por transferencias individuales— hasta una opción de bajo costo para los clientes que deseaban invertir en línea de manera directa. La recolección y el procesamiento de datos tuvieron un papel fundamental en el estudio. Para analizar el efecto del comportamiento individual de los clientes en respuesta a diferentes opciones, el equipo decidió montar una base de datos de clientes con una capacidad de 200 gigabytes, la cual debía contener cinco millones de clientes, 10 millones de cuentas, 100 millones de registros de transacciones y 250 millones de registros contables. 

Este objetivo requirió combinar, reconciliar, filtrar y limpiar datos procedentes de muchas bases de datos. La adopción de las recomendaciones del estudio produjo un incremento de cerca de 50 mil millones de dólares en la posesión de activos de sus clientes y casi 80 millones de dólares en ganancias adicionales.

Mediante un estudio de IO realizado para Citgo Petroleum Corporation,3 se optimizaron tanto las operaciones de refinación como el abastecimiento, la distribución y la comercialización de sus productos, lo cual produjo una mejora en las utilidades de alrededor de 70 millones de dólares al año. También en este estudio la recolección de datos jugó un papel muy importante. El equipo de IO realizó juntas para obtenerlos de la alta administración de Citgo con el objeto de asegurar la calidad continua de los datos. Se desarrolló un sistema de base de datos administrativos con tecnología de punta y se instaló en una computadora gigante.

En el caso de los datos solicitados que no existían, se crearon pantallas de LOTUS 1-2-3 para que el personal de operaciones introdujera la información recabada en computadoras personales (PC) que después se transfería a la computadora principal. Antes de introducir los datos en el modelo matemático, se usó un programa para verificar errores e incongruencias. Al principio, este programa generaba una lista de errores y mensajes de ¡2.5 cm de alto! Con el tiempo, el número de errores y mensajes (que indicaban números equivocados o dudosos) se redujo a menos de 10 en cada nueva corrida.

En la sección 3.5 se describirá el estudio de Citgo con más detalle. 

jueves, 21 de octubre de 2021

DEFINICIÓN DEL PROBLEMA Y RECOLECCIÓN DE DATOS Parte 2

De la misma manera, las corporaciones internacionales adquieren las obligaciones adicionales de cumplir con una práctica social responsable. Entonces, aunque se acepte que obtener ganancias es la responsabilidad primordial de la administración —lo cual, en última instancia, beneficia a las cinco partes—, también deben reconocerse estas responsabilidades sociales más extensas.

Es común que los equipos de IO pasen mucho tiempo en la recolección de los datos relevantes del problema. Se necesitan muchos datos para lograr la comprensión exacta del problema y así proporcionar el insumo adecuado para el modelo matemático que se elaborará en la siguiente etapa del estudio. Con frecuencia, al inicio del estudio no se dispone de muchos datos necesarios, ya sea porque nunca se guardó la información o porque lo que se guardó cayó en la obsolescencia o se almacenó en una forma incorrecta. En consecuencia, muchas veces se debe instalar un nuevo sistema de información general para reunir los datos sobre la marcha y en la forma adecuada. El equipo de IO debe destinar un tiempo considerable para recabar la ayuda de otros individuos clave de la organización, esto es, aquellos que le puedan proporcionar todos los datos vitales. Aun con este esfuerzo, muchos datos pueden ser “blandos”, es decir, estimaciones burdas basadas sólo en juicios personales. A menudo, el equipo de IO debe utilizar una gran cantidad de tiempo para mejorar la precisión de los datos y al final tendrá que trabajar con lo mejor que pudo obtener.

Debido a la expansión del uso de bases de datos y el crecimiento explosivo de sus tamaños en los años recientes, en la actualidad los equipos de IO a menudo se encuentran con que su problema más grande con los datos es que existen demasiados. Puede haber miles de fuentes de información, por lo cual la cantidad total de datos debe medirse en gigabytes o incluso en terabytes. En este entorno, la localización de los datos relevantes y la identificación de patrones interesantes pueden convertirse en tareas abrumadoras. Una de las herramientas más modernas de los equipos de IO que aborda este problema es una técnica denominada extracción de datos. Los métodos para aplicarla tratan de descubrir patrones interesantes dentro de las grandes fuentes de información que puedan conducir a una toma de decisiones útiles. (La primera referencia seleccionada al final del capítulo proporciona una base más sólida acerca de la extracción de datos.)



miércoles, 13 de octubre de 2021

DEFINICIÓN DEL PROBLEMA Y RECOLECCIÓN DE DATOS Parte 1

 En contraste con los ejemplos de los libros de texto, la mayor parte de los problemas prácticos que enfrenta un equipo de IO son descritos, al principio, de una manera vaga e imprecisa. Por consiguiente, la primera actividad será el estudio del sistema relevante y el desarrollo de un resumen bien definido del problema que será analizado. Esta etapa incluye la determinación de los objetivos apropiados, las restricciones sobre lo que es posible hacer, las interrelaciones del área en estudio con otras áreas de la organización, los diferentes cursos de acción posibles, los límites de tiempo para tomar una decisión, etc. Este proceso de definición del problema es crucial, pues afectará de forma significativa la relevancia de las conclusiones del estudio. ¡Es difícil obtener una respuesta “correcta” a partir de un problema enfocado de manera “equivocada”!

Lo primero que debe reconocerse es que un equipo de IO, por lo general, trabaja a nivel de asesoría. A los miembros del equipo no se les presenta un problema y se les dice que lo resuelvan como puedan, sino que asesoran a la administración —casi siempre un tomador de decisiones clave—. El equipo realiza un análisis técnico detallado y después presenta recomendaciones. Este informe identifica cierto número de opciones atractivas, en particular con diferentes supuestos o para un rango diferente de valores, de algún parámetro que marca una política que puede ser evaluada sólo por esa administración —por ejemplo, la decisión entre costo y beneficio—. La administración evalúa el estudio y sus recomendaciones, analiza una variedad de factores intangibles y toma una decisión final con base en su mejor juicio. Es vital que el equipo de IO tenga una visión al mismo nivel que la administración, incluso para la identificación del problema “correcto” desde el punto de vista gerencial y que, a su vez, la administración le brinde apoyo sobre cualquier curso que tome el estudio.

Un aspecto muy importante de la formulación del problema es la determinación de los objetivos apropiados. Para hacerlo, es necesario, en primer lugar, identificar a las personas de la administración que en realidad tomarán las decisiones concernientes al sistema en estudio, y después escudriñar el pensamiento de estos individuos en relación con los objetivos pertinentes. (La inclusión del tomador de decisiones desde el principio es esencial para obtener su apoyo durante la realización del estudio.)

Por su naturaleza, la IO se encarga del bienestar de toda la organización, no sólo de algunos componentes. Un estudio de IO trata de encontrar soluciones óptimas globales, y no soluciones menos que óptimas aunque sean lo mejor para uno de los componentes. Idealmente, los objetivos formulados deben coincidir con los de toda la organización; sin embargo, esta coincidencia no siempre es conveniente. Muchos problemas interesan sólo a una parte de la organización, de manera que el análisis sería demasiado extenso si los objetivos fueran generales y se prestara atención especial a todos los efectos secundarios sobre el resto de la organización. En lugar de ello, los objetivos de un estudio deben ser tan específicos como sea posible, siempre y cuando consideren las metas principales del tomador de decisiones y mantengan un nivel razonable de congruencia con los objetivos de niveles más elevados.

Cuando se trata de organizaciones lucrativas, un enfoque posible para no caer en un problema de suboptimización es utilizar la maximización de la ganancia a largo plazo —considerando el valor del dinero en el tiempo— como un objetivo único. El adjetivo a largo plazo indica que este objetivo proporciona la flexibilidad necesaria para considerar actividades que no se traducen de inmediato en ganancias —como los proyectos de investigación y desarrollo—, pero que deberán hacerlo con el tiempo para que valgan la pena. Este enfoque tiene muchas ventajas. El objetivo es tan específico como para usarlo en forma adecuada y al mismo tiempo lo bastante amplio como para tomar en cuenta la meta básica de las organizaciones lucrativas. En realidad, algunas personas piensan que cualquier otro objetivo legítimo se puede traducir en ganancias.

Sin embargo, en la práctica, muchas organizaciones lucrativas no utilizan este enfoque. Algunos estudios de corporaciones estadounidenses han demostrado que la administración tiende a adoptar la meta de ganancias satisfactorias combinada con otros objetivos, en lugar de enfocarse en la maximización de la ganancia a largo plazo. 

Algunos de estos otros objetivos pueden ser conservar la estabilidad de las ganancias, aumentar —o conservar— la participación de mercado con que se cuenta, permitir la diversificación de productos, mantener precios estables, mejorar las condiciones y el ánimo de los trabajadores, mantener el control familiar sobre el negocio o incrementar el prestigio de la compañía. Si se satisfacen estos objetivos, tal vez se logre maximizar las ganancias a largo plazo, pero la relación puede ser tan oscura que quizá sea mejor no incorporarlos.

Existen otras consideraciones que incluyen responsabilidades sociales muy distintas al objetivo de las ganancias. Las cinco partes que son afectadas por una empresa de negocios localizadas en un país determinado son: 1) los dueños (accionistas, etc.), que desean obtener ganancias (dividendos, valuación de acciones, etc.); 2) los empleados, que aspiran a un empleo seguro con un salario razonable; 3) los clientes, que quieren un producto confiable a un precio justo; 4) los proveedores, que desean integridad y un precio de venta razonable para sus bienes, y 5) el gobierno y, por ende, la nación, que quiere el pago de impuestos justo y que se tome en cuenta el interés común. Las cinco partes hacen contribuciones esenciales a la empresa; ésta no debe servir a ninguna de ellas para explotar a las otras. De la misma manera, las corporaciones internacionales

lunes, 11 de octubre de 2021

Panorama del enfoque de modelado en investigación de operaciones

 Lade mayor parte de este libro está dedicada a los métodos matemáticos de investigación de operaciones (IO). Esta disposición resulta apropiada puesto que las técnicas cuantitativas constituyen la parte principal de lo que se conoce sobre el tema. Sin embargo, ello no significa que los estudios prácticos de IO sean, en esencia, ejercicios de matemáticas. Con frecuencia, el análisis matemático sólo representa una pequeña parte del trabajo. El propósito de este capítulo es dar a las cosas una mejor dimensión mediante la descripción de las etapas más importantes de un estudio característico de IO.

Una manera de resumir las fases usuales —no secuenciales— de un estudio de investigación de operaciones es la siguiente:

1. Definición del problema de interés y recolección de datos relevantes.

2. Formulación de un modelo matemático que represente el problema.

3. Desarrollo de un procedimiento basado en computadora para derivar una solución para el problema a partir del modelo.

4. Prueba del modelo y mejoramiento de acuerdo con las necesidades.

5. Preparación para la aplicación del modelo prescrito por la administración.

6. Implementación.

En las siguientes secciones se analizará cada una de estas etapas.

La mayoría de los estudios de IO enumerados en la tabla 1.1 proporcionan ejemplos excelentes de la realización correcta de estas etapas. Algunos fragmentos de estos ejemplos serán intercalados a lo largo del capítulo, con referencias para estimular al lector a leer más sobre el tema.

sábado, 9 de octubre de 2021

Introducción a la Investigación de Operaciones - PROBLEMA 2

 Seleccione tres de las aplicaciones de investigación de operaciones mencionadas en la tabla 1.1. Lea los artículos correspondientes en los números de enero-febrero de Interfaces de los años indicados en la tercera columna. En cada caso, escriba un resumen de una página acerca de la aplicación y sus beneficios; incluya los no financieros.



viernes, 8 de octubre de 2021

Introducción a la Investigación de Operaciones - PROBLEMA 1

 Seleccione una de las aplicaciones de investigación de operaciones mencionadas en la tabla 1.1. Lea el artículo que la describe en el número de enero-febrero de Interfaces del año indicado en la tercera columna. Escriba un resumen de dos páginas acerca de la aplicación y los beneficios que proporcionó; incluya los beneficios no financieros.



miércoles, 6 de octubre de 2021

Introducción a la Investigación de Operaciones - REFERENCIAS SELECCIONADAS

 1. Bell, P. C., C. K. Anderson y S. P. Kaiser, “Strategic Operations Research and the Edelman Prize Finalist Applications 1989-1998”, en Operations Research, 51(1): 17-31, enero-febrero de 2003.

2. Gass, S. I. y C. M. Harris (eds.), Encyclopedia of Operations Research and Management Science, 2a. ed., Kluwer Academic Publishers, Boston, 2001.

3. Horner, P. (ed.), “Special Issue: Executive’s Guide to Operations Research”, en OR/MS Today, Institute for Operations Research and the Management Sciences, 27(3), junio de 2000.

4. Kirby, M. W.: “Operations Research Trajectories: The Anglo-American Experience from the 1940s to the 1990s”, en Operations Research, 48(5): 661-670, septiembre-octubre de 2000.

5. Miser, H. J., “The Easy Chair: What OR/MS Workers Should know About the Early Formative Years of Their Profession”, en Interfaces, 30(2): 99-111, marzo-abril de 2000.

6. Wein, L.M. (ed.), “50th Anniversary Issue”, en Operations Research (un estudio especial que describe explicaciones personales de algunos desarrollos teóricos y prácticos clave recientes), 50(1), enero-febrero de 2002.