domingo, 5 de mayo de 2024

Panorama del enfoque de modelado - PROBLEMA 24 - 26

 2.4-1. Consulte las páginas 18-20 del artículo al que se hace referencia en el pie de página de la sección 2.2 que describe un estudio de IO realizado para el Rijkswaterstaat, de Holanda. Describa una lección importante aprendida con la validación del modelo en este estudio.

2.4-2. Lea la referencia seleccionada 7. Resuma el punto de vista del autor sobre el papel de la observación y la experimentación en el proceso de validación del modelo.

2.4-3. Lea las páginas 603-617 de la referencia seleccionada 3.

a) ¿Qué dice el autor sobre el hecho de que un modelo se puede validar por completo?

b) Resuma la diferencia entre validación del modelo, de los datos, validación lógica/matemática, predictiva, operativa y dinámica.

c) Describa el papel del análisis de sensibilidad en la validación operativa de un modelo.

d) ¿Qué dice el autor sobre la existencia de una metodología de validación adecuada para todos los modelos?

e) Cite la página del artículo que enumera los pasos básicos para la validación.

domingo, 21 de abril de 2024

Panorama del enfoque de modelado - PROBLEMA 22 - 23

 2.2-2. Lea la referencia seleccionada 5.

a) Identifique el ejemplo del autor sobre un modelo de las ciencias naturales y uno de IO.

b) Describa el punto de vista del autor sobre la manera en que los principios básicos del uso de modelos para realizar investigación en ciencias naturales puede usarse para guiar la investigación sobre las operaciones (IO).

2.3-1. Lea la referencia seleccionada 5.

a) Describa el punto de vista del autor sobre el hecho de que la única meta al usar un modelo debe ser encontrar su solución óptima.

b) Resuma el punto de vista del autor sobre los papeles complementarios del modelado, la evaluación de la información obtenida y la aplicación del juicio del tomador de decisiones para determinar un curso de acción.

viernes, 19 de abril de 2024

Panorama del enfoque de modelado - PROBLEMA 20 - 21

Problema 20

 Lea las páginas 603-617 de la referencia seleccionada 3.

a) ¿Qué dice el autor sobre el hecho de que un modelo se puede validar por completo?

b) Resuma la diferencia entre validación del modelo, de los datos, validación lógica/matemática, predictiva, operativa y dinámica.

c) Describa el papel del análisis de sensibilidad en la validación operativa de un modelo.

d) ¿Qué dice el autor sobre la existencia de una metodología de validación adecuada para todos los modelos?

e) Cite la página del artículo que enumera los pasos básicos para la validación.

Problema 21

Lea el artículo al que se hace referencia en el pie de página de la sección 2.5 que describe un estudio de IO realizado para Texaco.

a) Resuma los antecedentes que llevaron a emprender este estudio.

b) Describa brevemente la interfaz del usuario con el sistema de apoyo a las decisiones OMEGA desarrollado como resultado de este estudio.

c) OMEGA se actualiza y amplía en forma constante para reflejar los cambios en el ambiente de las operaciones. Describa los distintos tipos de cambios realizados.

d) Resuma cómo se usa el sistema OMEGA.

e) Enumere los distintos beneficios tangibles e intangibles que resultaron de este estudio.


lunes, 26 de diciembre de 2022

5 ejercicios clásicos de programación lineal y sus resultados

 A continuación se presentan cinco ejercicios clásicos de programación lineal y sus resultados:

    Maximización de la ganancia en una empresa:

Un fabricante quiere maximizar su ganancia produciendo dos tipos de productos, A y B. Para producir una unidad del producto A, se necesitan 2 horas de trabajo y se obtiene una ganancia de $3. Para producir una unidad del producto B, se necesitan 3 horas de trabajo y se obtiene una ganancia de $2. La empresa solo tiene 400 horas disponibles para producir. ¿Cuántas unidades de cada producto deben producirse para maximizar la ganancia?

Solución:

La función a maximizar es: 3x + 2y, donde x es el número de unidades del producto A y y el número de unidades del producto B.

Los límites son: 2x + 3y ≤ 400 (por las horas disponibles) y x, y ≥ 0 (porque no se pueden producir unidades negativas).

El problema se puede resolver mediante el método gráfico, obteniendo los siguientes resultados:

x = 100 unidades

y = 133.3 unidades

La ganancia máxima es de $533.

    Problema de asignación: dado un conjunto de tareas y un conjunto de trabajadores, asignar cada tarea a un trabajador de tal manera que se minimice el costo total.

Ejemplo:

Tareas: T1, T2, T3, T4

Trabajadores: W1, W2, W3

Costos:

| T1 | T2 | T3 | T4 |

W1| 2 | 6 | 7 | 5 |

W2| 3 | 4 | 8 | 6 |

W3| 5 | 7 | 3 | 2 |

Solución: asignar T1 a W1, T2 a W2, T3 a W3 y T4 a W1. El costo total sería 17

    Problema del viajero de comercio: dado un conjunto de ciudades y las distancias entre ellas, encontrar el camino más corto para visitar todas las ciudades y regresar a la ciudad de origen.

Ejemplo:

Ciudades: C1, C2, C3, C4

Distancias (en millas):

| C1 | C2 | C3 | C4 |

C1| 0 | 2 | 5 | 7 |

C2| 2 | 0 | 4 | 1 |

C3| 5 | 4 | 0 | 6 |

C4| 7 | 1 | 6 | 0 |

Solución: visitar las ciudades en el siguiente orden: C1, C2, C4, C3, C1. La distancia total sería 14 millas.

    Problema de transporte: dado un conjunto de fábricas y un conjunto de tiendas, determinar la cantidad de productos que deben ser enviados de cada fábrica a cada tienda para satisfacer la demanda de productos de cada tienda y minimizar el costo total.

Ejemplo:

Fábricas: F1, F2

Tiendas: T1, T2, T3

Demanda de productos:

| T1 | T2 | T3 |

F1| 2 | 3 | 1 |

F2| 1 | 2 | 3 |

Costos (por unidad):

| T1 | T2 | T3 |

F1| 3 | 4 | 5 |

F2| 4 | 3 | 6 |

Solución: enviar 2 unidades de F1 a T1, 3 unidades de F1 a T2, 1 unidad de F1 a T3, 1 unidad de F2 a T1 y 2 unidades de F2 a T2. El costo total sería 27.

Asignación de trabajos a trabajadores:

Una empresa quiere asignar trabajos a sus trabajadores de manera que maximice su productividad. Cada trabajador tiene una habilidad diferente para realizar cada tipo de trabajo, y se sabe cuánto tiempo se tarda en realizar cada trabajo. ¿Cuántos trabajos de cada tipo deben asignarse a cada trabajador para maximizar la productividad?

Solución:

La función a maximizar es: 2x + 3y + 4z, donde x, y y z representan el número de trabajos de cada tipo que se asignan a cada trabajador.

Los límites son: x + y + z ≤ 10 (por el número total de trabajos disponibles) y x, y, z ≥ 0 (porque no se pueden asignar trabajos negativos).

El problema se puede resolver mediante el método gráfico, obteniendo los siguientes resultados:

x = 2 trabajos

y = 4 trabajos

z = 4 trabajos

La productividad máxima es de 26


domingo, 25 de diciembre de 2022

¿Qué es la Programación Lineal?

 La programación lineal es una técnica matemática utilizada para encontrar la solución óptima a problemas que involucran la maximización o minimización de una función lineal sujeta a un conjunto de restricciones lineales.


Un problema de programación lineal se puede escribir en la forma siguiente:

Maximizar o minimizar:

z = cx

sujeto a:

ax ≤ b

donde "z" es la función objetivo que se quiere maximizar o minimizar, "c" y "x" son vectores de coeficientes y variables, respectivamente, y "a" y "b" son vectores de coeficientes que representan las restricciones.

jueves, 22 de diciembre de 2022

¿Qué es la investigación de operaciones?

 La investigación de operaciones es una disciplina que se ocupa del estudio y la aplicación de técnicas y herramientas matemáticas y computacionales para la toma de decisiones en situaciones que involucran la optimización de procesos y sistemas. Esta disciplina se aplica en diversos campos, como la ingeniería, la economía, la psicología, la biología y la administración de empresas, entre otros.

La investigación de operaciones se utiliza para resolver problemas que involucran la optimización de recursos y la toma de decisiones en situaciones de incertidumbre. Por ejemplo, puede ser utilizada para determinar la mejor forma de producir un producto de manera más eficiente, o para diseñar una red de distribución que minimice los costos de transporte. También puede ser utilizada para modelar sistemas complejos y predecir su comportamiento en el futuro.

En resumen, la investigación de operaciones es una disciplina que utiliza técnicas matemáticas y computacionales para ayudar a tomar decisiones en situaciones de incertidumbre y optimizar la utilización de recursos.

sábado, 12 de noviembre de 2022

Panorama del enfoque de modelado - PROBLEMA 19

 Lea la referencia seleccionada 7. Resuma el punto de vista del autor sobre el papel de la observación y la experimentación en el proceso de validación del modelo.