jueves, 18 de agosto de 2016

Cadenas de Markov (IV)

Si se regresa al ejemplo del inventario desarrollado en la sección anterior, es fácil ver que {Xt}, en donde Xt es el número de cámaras en el almacén al final de la semana t (antes de recibir el pedido), es una cadena de Markov. Se verá ahora cómo obtener las probabilidades de transición (de un paso), es decir, los elementos de la matriz de transición (de un paso)


miércoles, 17 de agosto de 2016

Cadenas de Markov (III)

o, en forma equivalente,

Ahora es posible definir una cadena de Markov. Se dice que un proceso estocástico (X1) (t = 0,1,......) es una cadena de Markov de estado finito si tiene las siguientes caracteristicas.


  1. Un número finito de estados
  2. La propiedad markoviana
  3. Probabilidad de transición estacionarias.
  4. Un conjunto de probabilidades iniciales P{Xo = i} para toda i.

miércoles, 3 de agosto de 2016

Cadenas de Markov (II)

Entonces se dice que las probabilidades de transición (de un paso) son estacionarias y por lo general se denotan por Pij. Así, tener probabilidades de transición estacionarias implica que las probabilidades de transición no cambian con el tiempo. La existencia de probabilidades de transición (de un paso) estacionarias también implica que, para cada i, j y n (n = 0, 1, 2, ....._.


martes, 2 de agosto de 2016

Cadenas de Markov (I)

Es necesario hacer algunas suposiciones sobre la distribución conjunta de X0, X1, ....., para obtener resultados analíticos. Una suposición que conduce al manejo analítico es que el proceso estocástico es una cadena de Markov (que se definirá más adelante), que tiene la siguiente propiedad esencial: se dice que un proceso estocástico {X1} tiene la propiedad markoviana si

lunes, 1 de agosto de 2016

Procesos Estocásticos (II)

Como ejemplo, considérese el siguiente problema de inventarios. Una tienda de cámaras tiene en almacén un modelo especial de cámara que se puede ordenar cada semana. Sean D1, D2,.....las demandas de esta camára durante la primera, segunda, ....., semana, respectivamente. Se supone que las Di son variables aleatorias independientes e idénticamente distribuidas que tienen una distribución de probabilidad conocida. Sea Xo el número de cámaras que se tiene en el momento de iniciar el proceso, X1 el número de cámaras que se tienen al final de la semana uno, X2 el número de cámaras al final de la semana dos, etc. Supóngase que Xo = 3. El sábado en la noche la tienda hace un pedido que le entregan en el momento de abrir la tienda el lunes. La tienda usa la siguiente politica (s, S) para ordenar: si el número de cámaras en inventario al final de la semana es menor que s = 1 (no hay cámaras) ordena (hasta) S = 3. De otra manera, no coloca la orden (si se cuenta con una o más cámaras en el almacén, no se hace el pedido). Se supone que las ventas se pierden cuando la demanda excede el inventario. Entonces, {Xt} para t = 0,1.... es un proceso estocástico de la forma que se acaba de describir. Los estados posibles del proceso son los enteros 0,1,2,3 que se representan el número posible de cámaras en inventario al final de la semana. De hecho, es claro que las variables aleatorias Xt son dependientes y se pueden evaluar en forma iterativa por medio de la expresión


para t = 0, 1, 2,.... Este ejemplo se usará con propósitos ilustrativos a lo largo de muchas de las secciones que siguen. La sección 15.3 define con más detalle el tipo de procesos estocásticos que se analizarán en este capítulo.

domingo, 31 de julio de 2016

Procesos Estocásticos (I)

Un proceso estocástico se define sencillamente como una colección indexada de variables aleatorias {Xt}, en donde el índice t toma valores de un conjunto T dado. Con frecuencia T se toma como el conjunto de enteros no negativos y Xt representa una característica de interés medible en el tiempo t. Por ejemplo, el proceso estocástico, X1, X2, X3,....., puede representar la colección de niveles de inventario semanales (o mensuales) de un producto dado, o puede representar la colección de demandas semanales (o mensuales) de este producto.

Existen muchos procesos estocásticos interesantes. Un estudio del comportamiento de un sistema en operación durante algún periodo suele llevar al análisis de un proceso estocástico con la siguiente estructura. En puntos específicos del tiempo t etiquetados 0,1,......., el sistema se encuentra exactamente en una de un número finito de categorías o estados mutuamente excluyentes y exhaustivos, etiquetados 0,1,....,M. Los puntos en el tiempo pueden encontrarse a intervalos iguales o el espacio entre ellos pueden depender del comportamiento general del sistema físico en el que se encuentra sumergido el proceso estocástico, por ejemplo, el tiempo entre ocurrencias de algún fenómeno de interés. Aunque los estados pueden constituir una caracterización tanto cualitativa como cuantitativa del sistema, no hya pérdida de generalidad con las etiquetas numéricas 0,1,....,M, que se usarán en adelante para denotar los estados posibles del sistema. Así, la representación matemática del sistema físico es la de un proceso estocástico {Xt}, en donde las variables aleatorias se observan en t = 0, 1, 2,......, y en donde cada variable aleatoria puede tomar el valor de cualquiera de los (M + 1) enteros 0, 1,.....,M. EStos enteros son una caracterización de los (M + 1) estados del proceso. Debe hacerse notar que a cada estado que alcanza el proceso estocástico se le da una etiqueta que denota el estado físico del sistema. Es sólo por conveniencia en la notación que este conjunto se etiqueta 0,1,...., M.

miércoles, 27 de julio de 2016

Cadenas de Markov

En los problemas de toma de decisiones, con frecuencia surge la necesidad de tomar decisiones basadas en fenómenos que tienen incertidumbre asociado a ellos. Esta incertidumbre proviene de la variación inherente a las fuentes de esa variación que eluden el control o proviene de la inconsistencia de los fenómenos naturales. En lugar de manejar esta variabilidad como cualitativa, puede incorporarse al modelo matemático y manejarse en forma cuantitativa. Por lo general, este tratamiento se puede lograr si el fenómeno natural muestra un cierto grado de regularidad, de manera que sea posible describir la variación mediante un modelo probabílistico. Se supone aquí que el lector tiene conocimientos básicos sobre teoría de probabilidad. Las secciones que se presentan a continuación se refieren a los tipos especiales de modelos de probabilidad.