La tabla 14.4 muestra los resultados de la aplicación del método símplex modificado a este problema. La primera tabla símplex exhibe el sistema de ecuaciones inicial después de convertir de minimización de Z a maximización de (-Z) y de eliminar algebraicamente las variables básicas iniciales de la ecuación (0), lo mismo que se hizo para el ejemplo de terapia de radiación en la sección 4.6. Las tres iteraciones procedenigual que en el método simplex normal, excepto por la eliminación de ciertos candidatos para la variable básica entrante, según la regla de entrada restringida. En la primera tabla se elimina u1 como candidato porque su variable complementaria (v1) es ya una variable básica (de todas maneras, habría entrado x2 puesto que -4 < - 3). En la segunda tabla se elimina tanto u1 como y2 (puesto que v1 y x2 son variables básicas) y de manera automática se elige x1 como único candidato con coeficientes negativos en el renglón 0 (mientras que el método símplex normal habría permitido la entrada o bien de x1 o de u1, porque están empatadas con el coeficiente más negativo). En la tercera tabla se eliminan y1 y y2 (porque x1 y x2 son variables básicas). Esta vez u1 no se elimina, pues v1 ya no es una variable básica, así que se elige u1 como variable entrante.
No hay comentarios.:
Publicar un comentario