Consulte las páginas 18-20 del artículo al que se hace referencia en el pie de página de la sección 2.2 que describe un estudio de IO realizado para el Rijkswaterstaat, de Holanda. Describa una lección importante aprendida con la validación del modelo en este estudio.

lunes, 30 de septiembre de 2013

Aditividad (III)

El caso 2 también viola la suposición de aditividad debido al término adicional en su función objetivo, Z = 3x1 + 5x2 - x1x2 de forma que Z = 3+5 -1 = 7 para (x1,x2) = (1,1). Al contrario del primer caso,el caso 2 surge cuando los dos productos son competitivos de alguna forma en que su ganancia conjunta disminuye, Por ejemplo, supóngase que ambos productos deben usar la misma maquinaria y equipo. Si se produce cada uno por sí solo, maquinaria y equipo se dedican a este único uso. Sin embargo, al fábricar ambos productos se requiere cambiar los preocesos de producción de uno y la preparación para la del otro. Con este costo adicional importante, su ganacias conjunta será algo menor que la suma de sus ganancias individuales al producirlos por separado.

El mismo tipo de interacción entre actividades puede afectar la aditividad de las funciones de restriccion. Por ejemplo, considérese la tercera restricción del problema de la Wyndor Glass Co., 3x1 + 5x2 =< 18. Esta restricción se refiera a la capacidad de producción de la planta 3 en la que se dispone del 18% para los dos nuevos productos y la función en el lado izquierdo (3x1 + 2x2) representa el porcentaje de esa capacidad que se usa en estos productos. La columna aditividad satisfecha de la tabla 3.6 muestra este caso como está, mientras que las dos columnas siguientes exponen casos en los que la función tiene un término adicional de producto cruzado que viola la aditividad. Para las tres columnas, las contribuciones individuales de los productos en cuanto al uso de la capacidad de la planta 3 son las supuestas antes, a saber, 3x1 para el producto 1 y 2x2 para el producto para el producto 2, o sea, 3(2) = 6 para x1 = 2 y 2(3) = 6 para x2 = 3. Igual que en la tabla 3.5, la diferencia estriba en el último renglón que ahora da el valor total de la función para la capacidad utilizada cuando se fabrican los dos productos conjuntamente.



No hay comentarios.:

Publicar un comentario